Skip to main content

POST /v1/embeddings

Generate vector embeddings for text inputs.

  • Method: POST
  • Path: /v1/embeddings
  • Auth: Bearer token in Authorization header
  • Content-Type: application/json

Request parameters

  • model (string, required): Embedding model ID.
  • input (required): One of:
    • single string
    • array of strings
    • array of integers (token IDs)
    • array of arrays of integers (batched token IDs)
  • dimensions (integer, optional): Target dimensionality if the model supports it.
  • encoding_format (enum, optional, default "float"): "float" or "base64".

Example requests

from openai import OpenAI

client = OpenAI(base_url="https://api.naga.ac/v1", api_key="YOUR_API_KEY")

resp = client.embeddings.create(
model="text-embedding-3-small",
input=[
"The food was delicious!",
"Service could be faster."
],
# dimensions=512, # if supported
# encoding_format="base64",
)
print(resp)

Response

Returns embedding vectors per input. The structure is compatible with OpenAI's embeddings API. When encoding_format="float", vectors are float arrays; with "base64", vectors are base64-encoded.